Y_5Bi_3 are higher than those of the corresponding sites in U_3S_5 . Effectively, in both compounds all three atoms capping the trigonal prisms are at relatively short distances, two atoms now cap faces of the distorted octahedra. Some of the square pyramids are transformed into octahedra by the approach of a sixth atom and the tetrahedra change into trigonal bipyramids in a similar way. Atoms of the same atomic species should be included in the first coordination shell of the majority atoms for these compounds.

For all iono-covalent compounds and their metallic anti-types treated above, the majority atoms are larger than the minority atoms. This is not the case for the compounds belonging to the third group, *i.e.* the strongly distorted intermetallic compounds with the same stoichiometry as the iono-covalent compounds. The interchange in the size of the atoms explains the important distortions observed with respect to the structures of the first two groups of compounds. In Tm₃Ga₅ the homonuclear Ga-Ga distances are shorter than the heteronuclear distances and the Ga atoms of the TPv sites are displaced out of the square pyramids into Tm₄Ga₂ trigonal prisms. The numbers of heteronuclear contacts of the Tm sites are, as expected, higher than for corresponding sites in the chalcogenides and pnictides, ten for the TPc site and nine for the HPb site, respectively.

We wish to acknowledge the help of Ms Birgitta Künzler for the preparation of the drawings. This study was supported by the Swiss National Science Foundation under contract 20-28490.90 and the Alfred and Hilde Freissler Fond.

References

- BLANC, E., SCHWARZENBACH, D. & FLACK, H. D. (1991). J. Appl. Cryst. 24, 1035–1041.
- BRUNTON, G. D. & STEINFINK, H. (1971). Inorg. Chem. 10, 2301–2303.
- CROMER, D. T. (1976). Acta Cryst. B32, 1930-1932.
- DEBAERDEMAEKER, T., GERMAIN, G., MAIN, P., TATE, C. & WOOLFSON, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- GELATO, L. M. & PARTHÉ, E. (1987). J. Appl. Cryst. 20, 139–143. GELLER, S. (1955). Acta Cryst. 8, 15–21.
- HALL, S. R. & STEWART, J. M. (1990). Editors. XTAL3.0 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- JAULMES, S. (1974). Acta Cryst. B30, 2283-2285.
- JEITSCHKO, W. & DONOHUE, P. C. (1975). Acta Cryst. B31, 1890–1895.
- LARSON, A. C. & CROMER, D. T. (1962). Acta Cryst. 15, 1224-1227.
- MAZURIER, A. & ETIENNE, J. (1973). Acta Cryst. B29, 817-821.
- OLTHOF-HAZEKAMP, R. (1990). CRYLSQ. XTAL3.0 User's Manual, edited by S. R. HALL & J. M. STEWART. Univs. of Western Australia, Australia, and Maryland, USA.
- POTEL, M., BROCHU, R. & PADIOU, J. (1975). Mater. Res. Bull. 10, 205–208.
- POTEL, M., BROCHU, R., PADIOU, J. & GRANDJEAN, D. (1972). C.R. Acad. Sci. Sér. C, 275, 1419–1421.
- SCHWARZENBACH, D. (1966). Private communication.
- SEGRE, C. U., BRAUN, H. F. & YVON, K. (1981). Ternary Superconductors, edited by G. K. SHENOY, B. D. DUNLAP & F. Y. FRADIN, pp. 243-246. Amsterdam: Elsevier.
- VILLARS, P. & CALVERT, L. D. (1985). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 1. Ohio: American Society for Metals.
- WANG, Y., GABE, E. J., CALVERT, L. D. & TAYLOR, J. B. (1976). Acta Cryst. B32, 1440-1445.
- YATSENKO, S. P., GLADYSHEVSKII, E. I., TCHUNTONOV, K. A., YARMOLYUK, YA. P. & GRIN', YU. N. (1983). J. Less-Common Met. 91, 21-32.

Acta Cryst. (1992). C48, 225-228

Monoclinic NdRuSi₂, a Distortion Derivative of Orthorhombic CeNiSi₂

BY K. CENZUAL, R. E. GLADYSHEVSKII AND E. PARTHÉ

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland

(Received 24 May 1991; accepted 9 August 1991)

Abstract. Neodymium ruthenium disilicide, $M_r = 301.48$, monoclinic, mP8, $P2_1/m - e^4$ (No. 11), a = 4.4620 (6), b = 4.0451 (6), c = 8.242 (2) Å, $\beta = 102.23$ (1)°, V = 145.39 (5) Å³, Z = 2, $D_x = 6.887$ Mg m⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 22.065$ mm⁻¹, F(000) = 264, T = 293 K, wR = 0.040 for 459 contributing unique reflections. The structure is isopointal with TmLi_{1-x}Ge₂ (x = 0.5), both being

distortion variants of the orthorhombic CeNiSi₂-type structure. Opposite to what is observed for TmLi_{0.5}Ge₂, the distortions in NdRuSi₂ are such that all non-metal atoms take part in infinite zigzag chains. Ru—Ru distances of 3.08 Å exist.

Introduction. No systematic investigations of the Nd-Ru-Si system have been reported. The only

© 1992 International Union of Crystallography

compound which has been identified so far is tetragonal NdRu₂Si₂ (Ballestracci & Astier, 1978), crystallizing with the ThCr₂Si₂ (Ban & Sikirica, 1965) or CeAl₂Ga₂-type structure (Zarechnyuk, Kripyakevich & Gladyshevskii, 1965), an ordered substitution variant of the BaAl₄-type structure (Andress & Alberti, 1935).

As a guide-line in the search for new ternary intermetallic compounds one can make use of the observation that many compounds in rare-earth– transition-metal–main-group element systems are constructed from intergrown segments characteristic of simple parent structures, which are often found in the same or in related phase diagrams. A large number of ternary intergrowth structures are known where slabs or columns with an atom arrangement corresponding to the ThCr₂Si₂ type, or its disordered version the BaAl₄ type, are intergrown with segments from other parent structures such as W, Cu or AlB₂.

Since binary NdSi₂ crystallizes at high temperature (Brauer & Haag, 1952) with the tetragonal α -ThSi₂ type, a stacking variant of AlB₂, and adopts at low temperature (Mayer, Yanir & Shidlovsky, 1967) the GdSi₂ type, an orthorhombic deformation derivative of α -ThSi₂, it seemed of interest to investigate if for composition NdRuSi₂ a structure, where ThCr₂Si₂type slabs are intergrown with AlB₂-type slabs, occurs. Such an atom arrangement, known as the CeNiSi₂ structure type (Bodak & Gladyshevskii, 1970), or BaCuSn₂ type (May & Schäfer, 1974), has been observed for several silicides and germanides. Various variants of the CeNiSi₂ type exist. They are the TbFeSi₂ structure with a site exchange between transition-metal and main-group elements in the ThCr₂Si₂-type slab (Yarovets & Gorelenko, 1981), the non-stoichiometric $\text{CeNi}_{1-x}\text{Si}_2$ or $\text{CeNi}_{1-x}\text{Si}_{2+x}$ structures with vacancies or mixed occupation on the transition-metal site (Dörrscheidt, Savelsberg, Stöhr & Schäfer, 1982; Chabot, Parthé & Steinmetz, 1986), the CeRh_{1-x}Ge_{2+x} structure with a primitive orthorhombic cell and disordered substitution on half of transition-metal sites (Bodak, Seropegin, the Sologub, Pecharskii & Gribanov, 1989), and the $TmLi_{1-x}Ge_2$ structure, a monoclinic distortion variant (Pavlyuk, Bodak, Pecharskii & Gladyshevskii, 1989). Of the related ternary $NdTSi_2$ compounds, two of them: NdMnSi₂ and NdFeSi₂ (Venturini, Malaman, Meot-Meyer, Fruchart, Le Caer, Malterre & Roques, 1986) have been reported with a TbFeSi₂type structure and four: NdCoSi₂ (Pelizzone, Braun & Muller, 1982), NdNiSi₂ (Bodak & Gladyshevskii, 1970), NdRhSi₂ and NdIrSi₂ (Chevalier, Lejay, Etourneau, Vlasse & Hagenmuller, 1982) with a CeNiSi₂-type structure. However, the actual site occupation in the last two compounds needs to be verified. An unusual site occupation was reported for NdCu_{1.6}Si_{1.4} (Bodak, Gladyshevskii & Kalychak,

Table 1. Atomic positional and displacement parameters for NdRuSi₂ with space group $P2_1/m$

The equivalent isotropic atomic displacement parameters are expressed as $U_{eq} = (1/3)\sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$.

E.s.d.'s are given in parentheses.

	Wyckoff position	x	у	Z	$U_{\rm eq}({\rm \AA}^2 \times 100)$
Si(1)	2(e)	0.0364 (9)	14	0.0907 (5)	0.8 (1)
RuÌ	2(e)	0.1179 (2)	14	0.3869 (2)	0.56 (3)
Nd	2(e)	0.4130 (2)	4	0.79904 (9)	0.68 (2)
Si(2)	2(e)	0.6657 (9)	14	0.4913 (5)	0.8 (1)

1971), which crystallizes in a TbFeSi₂-type structure with a mixed occupation of the trigonal prismatic site inside the AlB₂-type slabs.

Experimental. Single crystals were found in a sample of nominal composition Nd₂₅Ru₂₅Si₅₀, prepared from Nd (99.9%), Ru (99.999%) and Si (99.999%) by arc melting under an argon atmosphere (weight loss 0.4%) and annealed at 1073 K for two weeks in a silica tube under vacuum, and quenched in water. A single crystal [dimensions \pm (100) 0.088, \pm (010) $0.050, \pm (001) 0.030 \text{ mm}$] was mounted on a Philips PW 1100 automatic four-circle diffractometer, Mo $K\alpha$ radiation with graphite monochromator. The unit-cell parameters were refined from 2θ values of 22 reflections (Mo $K\alpha$, $\lambda = 0.71073$ Å, $20 < 2\theta <$ 38°). 1026 reflections were collected out to $(\sin \theta / \lambda) =$ 0.704 Å^{-1} ($-6 \le h \le 6, 0 \le k \le 5, 0 \le l \le 11$ and the anti-reflections) in the ω -2 θ -scan mode, yielding 482 unique reflections ($R_{int} = 0.038$). Two standard reflections, 020 and 111, were measured with maximum intensity variations 0.4%. Absorption correction was made using the program LSABS (Blanc, Schwarzenbach & Flack, 1991) with maximum and minimum transmission factors of 0.5351 and 0.2465. The anomalous-dispersion coefficients were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Systematic absences led to the following possible space groups: $P2_1$ and $P2_1/m$ (International Tables for Crystallography, 1983, Vol. A). The structure was solved in space group $P2_1/m$ by the MULTAN87 program (Debaerdemaeker, Germain, Main, Tate & Woolfson, 1987) and confirmed by the structure refinement, based on |F| values using the program CRYLSQ (Olthof-Hazekamp, 1990). 26 variables including anisotropic atomic displacement parameters refined to R = 0.049 and wR= 0.040 [$w = 1/\sigma^2(|F_{rel}|)$, S = 2.824] considering 459 contributing unique reflections with $|F_{rel}| >$ $3\sigma(|F_{rel}|)$. Secondary-extinction correction parameter (Gaussian distribution of mosaic spread) was refined to G = 0.0014 (6). The maximum shift/e.s.d. in the last cycle was 0.0003. Final residual electron density +4.4 (-5.9) e Å⁻³. The programs used to

refine the structure are all from the XTAL3.0 system (Hall & Stewart, 1990). The atom positional parameters, standardized by using the STRUCTURE TIDY program (Gelato & Parthé, 1987), and displacement parameters are listed in Table 1.*

Discussion. The structure of NdRuSi₂ is a distorted variant of the orthorhombic CeNiSi₂ type, which, as mentioned above, can be considered as an intergrowth of AlB₂- and ThCr₂Si₂-type slabs. It is also a filled-up derivative of the CaSb₂ type (Deller & Eisenmann, 1976) which crystallizes in the same space group, $P2_1/m$. A similar, isopointal structure was recently reported for TmLi_{0.5}Ge₂ (Pavlyuk *et al.*, 1989), where, however, the site inside the square antiprisms in the ThCr₂Si₂-type slab is only partly occupied by Li. Very short distances are observed around this site (four Ge at 2.06 – 2.17 Å), which

seem to indicate that the reported positional coordinates only correspond to average values. Projections of the structures of NdRuSi₂ and TmLi_{0.5}Ge₂ along [010], together with a directly comparable projection of CeNiSi₂, are presented in Fig. 1.* Interatomic distances up to 3.9 Å in CeNiSi₂ and corresponding distances in the two monoclinic deformation variants are listed in Table 2.

It can be seen from the figure that the distortions from the CeNiSi₂ structure are more pronounced in NdRuSi₂ than in TmLi_{0.5}Ge₂, the cell of which is pseudo-orthorhombic $[2c \cos(180^\circ - \beta) = a]$. Deformations are observed in particular at the interface of the two ThCr₂Si₂-type slabs where the square-mesh Si net is strongly distorted. The Si atoms are displaced from the ideal sites, parallel to [100], so that

^{*} A similar description is obtained for $\text{TmLi}_{0.5}\text{Ge}_2$, originally reported with the *c* axis unique, by applying the following unit-cell vector transformation: $\mathbf{a}' = -\mathbf{a}$, $\mathbf{b}' = \mathbf{c}$, $\mathbf{c}' = \mathbf{a} + \mathbf{b}$ followed by a $\frac{1}{2}0\frac{1}{2}$ origin shift. This cell does not correspond to the 'best' monoclinic cell (Parthé & Gelato, 1985) but is, due to the pseudo-orthorhombicity of the structure, very similar to it. The standardized description of CeNiSi₂ is shifted by $0\frac{11}{22}$ with respect to the originally published data.

Fig. 1. Projections of the structures of NdRuSi₂ and TmLi_{0.5}Ge₂ along [010] and of CeNiSi₂ along [001]. The contours of the trigonal prisms in the AlB₂-type slabs and of the square antiprisms in the ThCr₂Si₂-type slabs are emphasized. The asterisks in the circles corresponding to the Li atoms in TmLi_{0.5}Ge₂ are a reminder that these sites are only 50% occupied.

^{*} Lists of structure factors and anisotropic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54573 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Interatomic distances up to 3.9 Å in CeNiSi₂ and corresponding distances in TmLi_{0.5}Ge₂ and NdRuSi₂

For NdRuSi₂ e.s.d.'s are less than 0.005 Å.

CeNiSi ₂		TmLi _{0.5} Ge ₂		NdRuSi ₂	
Ce-4Si(1) 3.087		Tm- (2Ge(1)	2.900	Nd—∫2Si(1)	3.116
• • •		2Ge(1)	2.899	€ 2Si(1)	3.163
2Si(2)	3.116	2Ge(2)	3.045	2Si(2)	3.096
2Si(2)	3.121	∫ Ge(2)	3.022	∫ Si(2)	2.986
		€ Ge(2)	3.019	USi(2)	3.737
4Ni	3.167	∫2Li	2.974	∫2Ru	3.242
		l 2Li	3.236	L2Ru	3.490
2Si(1)	3.218	∫ Ge(1)	3.177	∫ Si(1)	3.212
		l Ge(1)	3.178	USi(1)	3.269
Ni	3.428	Li	3.255	Ru	3.373
Ni-2Si(2)	2.297	Li— 2Ge(2)	2.146	Ru— 2Si(2)	2.371
Si(1)	2.318	Ge(1)	2.168	Si(1)	2.391
2Si(2) = 2.342		∫ Ge(2)	2.059	∫ Si(2)	2.355
		Ce(2)	2.415	U Si(2)	2.413
4Ce	3.167	∫2Tm	2.974	∫2Nd	3.242
		l2Tm	3.236	L2Nd	3.490
Ce	3.428	Tm	3.255	Nd	3.373
4Ni 3.618		{ 2Li	3.146	∫2Ru	3.082
		L2Li	3.620	C2Ru	4.062
Si(1)— Ni	2.318	Ge(1)— Li	2.168	Si(1)— Ru	2.391
2Si(1)	2.476	2Ge(1)	2.556	2Si(1)	2.496
4Ce	3.087	∫2Tm	2.900	∫2Nd	3.116
		₹2Tm	2.899	L2Nd	3.163
2Ce	3.218	∫ Tm	3.177	Nd	3.212
		l Tm	3.178	Nd	3.269
Si(2)—2Ni	2.297	Ge(2)— 2Li	2.146	Si(2)— 2Ru	2.371
2Ni	2.342	Č ∫ Li	2.059	∫Ru	2.355
		ί Li	2.415	l Ru	2.413
4Si(2)	2.903	∫ 2Ge(2)	2.787	∫2Si(2)	2,527
()		2Ge(2)	2.790	12Si(2)	3.582
2Ce	3.116	2Tm	3.045	2Nd	3.096
2Ce	3.121	∫ Tm	3.022	∫ Nd	2.986
		lΤm	3.019	l Nd	3.737

the shortest Si(2)—Si(2) distances become contact distances, just as the shortest distances between Si(1) atoms are (2.53 compared to 2.50 Å in NdRuSi₂ but 2.90 compared to 2.48 Å in CeNiSi₂ and 2.79 compared to 2.56 Å for Ge—Ge distances in TmLi_{0.5}Ge₂). Atoms from both sites form infinite zigzag chains parallel to [010]. At the same time large differences are observed in the distances between transition-metal atoms, two of the Ru atoms of the neighbouring square being now at a shorter distance (two Ru at 3.08 and two Ru at 4.06 Å, compared to four Ni at 3.62 Å in CeNiSi₂).

As expected the coordination polyhedron around the Si site inside the AlB₂-type slab [Si(1)], a trigonal Nd₆ prism capped by two Si and one Ru atom, is little affected by the deformation. The Ru₄ tetrahedron around the other Si site [Si(2)] also remains relatively regular, but one of the four atoms of the surrounding rare-earth-atom tetrahedron is now at a considerably longer distance (3.74 compared to 3.12 Å in CeNiSi₂). As a consequence the rare-earth site has only nine, instead of ten, near Si neighbours. The Si₅ and Nd₅ square pyramids around the transition-metal site are slightly larger than corresponding polyhedra around Ni in CeNiSi₂, the square bases of the Si₅ pyramids being distorted as mentioned above. There is no evidence for vacancies or mixed occupation on any of the crystallographic sites.

This study was supported by the Swiss National Science Foundation under contract 20-28490.90 and the Alfred and Hilde Freissler Fond.

References

- ANDRESS, K. R. & ALBERTI, E. (1935). Z. Metallkd. 27, 126–128.
 BALLESTRACCI, R. & ASTIER, G. (1978). C. R. Acad. Sci. Sér. B, 286, 109–112.
- BAN, Z. & SIKIRICA, M. (1965). Acta Cryst. 18, 594-599.
- BLANC, E., SCHWARZENBACH, D. & FLACK, H. D. (1991). J. Appl. Cryst. 24, 1035-1041.
- BODAK, O. I. & GLADYSHEVSKII, E. I. (1970). Sov. Phys. Crystallogr. 14, 859-862.
- BODAK, O. I., GLADYSHEVSKII, E. I. & KALYCHAK, YA. M. (1971). 1st All-Union Conference on the Crystal Chemistry of Intermetallic Compounds, Lvov. Collected Abstracts, pp. 40-41.
- BODAK, O. I., SEROPEGIN, YU. D., SOLOGUB, O. L., PECHARSKII, V. K. & GRIBANOV, A. V. (1989). XII Eur. Cryst. Meet., Moscow. Collected Abstracts, Vol. 2, p. 39.
- BRAUER, G. & HAAG, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.
- CHABOT, B., PARTHÉ, E. & STEINMETZ, J. (1986). J. Less-Common Met. 125, 147-156.
- CHEVALIER, B., LEJAY, P., ETOURNEAU, J., VLASSE, M. & HAGEN-MULLER, P. (1982). VII Intern. Conf. on Solid Compounds of Transition Elements, Grenoble. Abstract II B 16.
- DEBAERDEMAEKER, T., GERMAIN, G., MAIN, P., TATE, C. & WOOLFSON, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- DELLER, K. & EISENMANN, B. (1976). Z. Anorg. Allg. Chem. 425, 104–108.
- DÖRRSCHEIDT, W., SAVELSBERG, G., STÖHR, J. & SCHÄFER, H. (1982). J. Less-Common Met. 83, 269-278.
- GELATO, L. M & PARTHÉ, E. (1987). J. Appl. Cryst. 20, 139-143.
- HALL, S. R. & STEWART, J. M. (1990). Editors. XTAL3.0 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- MAY, N. & SCHÄFER, H. (1974). Z. Naturforsch. Teil B, 29, 20–23. MAYER, I., YANIR, E. & SHIDLOVSKY, I. (1967). Inorg. Chem. 6, 842–844.
- OLTHOF-HAZEKAMP, R. (1990). CRYLSQ. XTAL3.0 User's Manual, edited by S. R. HALL & J. M. STEWART. Univs. of Western Australia, Australia, and Maryland, USA.
- PARTHÉ, E. & GELATO, L. M. (1985). Acta Cryst. A41, 142-151.
- PAVLYUK, V. V., BODAK, O. I., PECHARSKII, V. K. & GLADYSHEVSKII, E. I. (1989). XII Eur. Cryst. Meet., Moscow. Collected Abstracts, Vol. 2, p. 126.
- PELIZZONE, M., BRAUN, H. F. & MULLER, J. (1982). J. Magn. Magn. Mater. 30, 33-36.
- VENTURINI, G., MALAMAN, B., MEOT-MEYER, M., FRUCHART, D., LE CAER, G., MALTERRE, D. & ROQUES, B. (1986). Rev. Chim. Minér. 23, 162–182.
- YAROVETS, V. I. & GORELENKO, YU. K. (1981). Vestn. L'vov Univ. Ser. Khim. 23, 20-21.
- ZARECHNYUK, O. S., KRIPYAKEVICH, P. I. & GLADYSHEVSKII, E. I. (1965). Sov. Phys. Crystallogr. 9, 706–708.